SUPERVISED LEARNING

RITIK JAIN

A 10 x 10 checkerboard. '

Date: July, 2024.
! Arguably the first machine learning algorithm, designed in 1959 by MIT computer scientist Arthur
Samuel, was made to learn the game of checkers. You can find his original paper here.

1

https://people.csail.mit.edu/brooks/idocs/Samuel.pdf

YW ® 0% 0 N oUW
N =

10.

RITIK JAIN

Contents.

Introduction
Linear regression
Gradient descent
Least-squares regression
k-nearest-neighbors
Logistic Regression
Support Vector Machines
Soft-margin SVM and the kernel trick
Soft-margin SVM
The kernel trick
Appendix A: Assumptions for linear regression

Appendix B: Gradient descent

10
14
18
21
26
29
29
30
32
34

SUPERVISED LEARNING 3

1. Introduction.

An innate characteristic of the human species is our ability to classify and understand
the world around us based on the information gathered by our senses. We've all likely
observed that stop signs tend to be painted red with white lettering, and that it tends to
be warmer outside between the months of June and September.” We're also able to pick
up more fuzzy patterns, like the fact that red tends to denote negatives, as in red lettering
on negative bank balances, red lights, red error messages, etc.

As the world has grown more complex, so have the patterns we are required to under-
stand. People 1000 years ago did not have to understand the effect of the money supply
on inflation! Such problems motivated the development of statistics in the latter half of
the second millennium, our first systemic attempt at understanding large-scale data. The
field of machine learning is the most important offshoot of statistics — characterized by dy-
namic computer-powered models, which are capable of handling massive datasets and
continuously improving over time. This new field has led to breakthroughs in almost ev-
ery discipline imaginable — medicine, finance, biology, mathematics, and even literature!
In this chapter, we will discuss a few algorithms from an extremely popular subfield of
machine learning — supervised learning.

2If you live on the Northern Hemisphere!

4 RITIK JAIN
1. INTRODUCTION

Here are two prototypical questions which can be answered using supervised learning.

Question 1.1. Determine whether or not a $100 bill is real or counterfeit, given 1000 bills
which are known to be real, and 1000 bills which are known to be counterfeit.

Question 1.2. Based on a dataset consisting of the square footage and price of 100 NYC
apartments, how much should an apartment in New York cost based on its square footage?

The key goal of supervised learning is figuring out how to sort/label new data accu-
rately, given some already-labelled data. In Question 1.1, we aim to label bills as real or
counterfeit, and Question 1.2, we aim to label apartments with an accurate price, based
on their square footage. However, the two questions involve different types of sorting.
In the first case, the data is sorted into two classes — real or counterfeit. Problems such
as these, where there are finitely many possible labels for the data, are called classification
problems. In the second case, there are (theoretically) infinite possible prices (labels) for a
given apartment. Such problems are called regression problems.

Some mathematical formalization is needed to investigate supervised learning more
rigorously.

Definition 1.3. A dataset X is a finite subset of R". Each element x € X is called a datapoint.
Each entry in a given x € X is called a feature of x. The dataset X is typically normalized
such that the datapoints in X lie inside the unit sphere in R”, which can often aid in
avoiding numerical issues.

We now formalize the notion of classifying data.

Definition 1.4. Given a dataset X which can be partitioned into subsets {C;},c;, a set
L C Ris called the label space of X if each subset C; C X can be associated with a unique
le L.

Example 1.5. Every Amazon customer can be assigned a vector/point in R?, containing
their age, annual income in thousands, and their annual expenditure on the website. The
set of all such vectors V' is a dataset, which can be normalized to lie within the unit sphere
in R? by subtracting the mean and dividing the maximum from each feature of every
vel.

SUPERVISED LEARNING 5

Normalized Amount Spent

FIGURE 1. Normalized dataset of Amazon customers.

Example 1.6. In Question 1.1, the two classes are counterfeit and real. In such binary
classification problems, the label space is usually taken to be {0,1}. In this case, 0 may
represent counterfeit, and 1 may represent real. In Question 1.2, supposing that the prices
of NYC apartments range from $100k —$100M, a possible label space is the closed interval
L =[0.1,100], where each [€ L represents a possible apartment price in millions.

In general, L is finite in classification problems, and L is infinite in regression problems.

For a dataset X with a label space L, let Y C X x L be our given labelled data. The
problem of labelling new data accurately can be formalized as the problem of finding a
simple function f : X — L whose graph “agrees with” the labelled data Y. We call f a
model of the data.

Example 1.7. Let V be the dataset of Amazon customers from before. Suppose we want
to predict what rating a customer will give a particular ad from 1 to 5, given ratings
from 1000 customers S on that ad. The initial information is the labelled data Y = S x
{1,2,3,4,5}. Then, we can model the ratings with a function f : V" — {1,2,3,4,5}, will
take a customer as input, and output an accurate prediction for the rating they would
give.

Given a dataset X with a label space L, and labelled data Y ¢ X x L, what should a
good model f look like?

First, f should "agree” with Y. That is, for any x € X, (x, f(x)) € R""! should lie
somewhere near the elements of Y whose first entry is x. The model f should also be
simple — meaning that it should be smooth, and its graph shouldn’t have any unnecessary
wiggles or curves. In machine learning terminology, we want to avoid underfitting (high
bias) in the first case, and overfitting (high variance) in the second.

6 RITIK JAIN

One common method for testing the fit of a given supervised learning model is k-fold
cross-validation, which is done as follows. First, we randomly select k£ disjoint subsets
s1,--+,s,0f Y, called folds. Then, for 1 <i < k, we train the modelon sy, - - - s;-1, Sit1, - , Sk,
fit the result to the fold s;, and evaluate its accuracy. After averaging the results, we get a
comprehensive accuracy score for the model, which tells us if it underfits or overfits the
labelled data. The algorithm is most commonly performed with £ = 5, in which case it is
called five-fold cross-validation. It can be implemented in Python as follows.

import numpy as np
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris

load_iris() # Load data.
data.data, data.target

data
X, ¥

model = # Insert your favorite model here.
cv_scores = cross_val_score(model, X, y, cv=5) # Five-fold cross-validation.

print (f’Cross-validation scores: {cv_scores}’) # Output the results.
print (f’Average cross-validation score: {np.mean(cv_scores):.2f}’)

In the next sections, we will go over some common models for finding models for
regression and classification problems. We also discuss gradient descent, an important
algorithm for implementing these models in practice.

SUPERVISED LEARNING 7

2. LINEAR REGRESSION

Linear regression, a generalization of the “line-of-best-fit” in higher dimensions, is
today one of the most widely-used regression models in machine learning for its sim-
plicity and robustness. For a dataset X C R", with a subset of m labelled datapoints
Y = {(#® yD), ... (F™) y™)} c R, linear regression takes the model f to be the
plane-of-best-fit to the points in Y. This function f is called the regression plane.

Note that, in the n = 1 case, f is simply the line-of-best-fit to the labelled datapoints
in R?, also called the regression line. Planes have no wiggles in their graph, so overfitting
is automatically avoided, and in the case that the data enjoys fairly linear relationships
between its different features, underfitting is also negligible. The full assumptions for the
use of linear regression are discussed in Appendix A.

Let’s start the derivation of linear regression! First, f is a linear function, so it is of the
form

(1) f(xla"'7xn):w0+wll'1—|—---—{—wnxn

for some wg, wy,---w, € R. The w; are called the weights of the features z;. Letting
W= (wy, - ,wy,) and ¥ = (x,--- ,x,), we can rewrite (1) as
f(Z) =wo+ -z,
where - denotes the dot product.’

How can we choose the “right” weights w, and %? One method of doing so is defining
a cost function, which measures the error of a generic regression line f to the data in terms
of its weights wy, W, such the ideal weights wy, W minimize the cost function. We will
derive the cost function for linear regression below.

Suppose there are m training examples in Y C R"*!, denoted by

The error of our regression plane at a fixed (z(, y) is the difference

2) F@) =y = (wo + @i - V) =y

Note that (2) is a function of . In order to ensure that (2) is convex, or has a unique
minimum, and is differentiable, we take the square to obtain

(f(@) —y@)2.
What would be the best way to measure the total error over each (z(V, ") € Y? The most
straightforward method is taking the average error over each each pointin Y’

3The technique of using linear algebra to represent data, called vectorization, can often speed up numeri-
cal computation.

8 RITIK JAIN

1 - 2 1 & AN 2
3 L (i) _ L () _ @)%
3) -2 (Fe) - mz (wo + 10) —)

Note that (3) is a function of w, and the weight vector @. Moreover, the w, and vector
U which minimizes the average error (3) corresponds to the ideal choice of coefficients for
f in (1) as desired. Now, we are all set to define the cost function.

Definition 2.1. Define X, Y, and f as above. The cost function of the regression plane f is
the function

n — 1 i = i i 2

4) J:R"™ 5 R, J(wo,w):%;((wo+w-x())—y()) :
The expression for the cost function is exactly the same as (3), except divided by 2.
While this simplifies matters when taking partial derivatives, the global minima of (3)

and (4) are identical.

Since the cost function J is the sum of squared terms, it is convex, and therefore has
a unique global minimum (wg, w*). Again, the vector (wg, ") corresponds to the ideal
choice of weights for our regression line f, thus

f(@) = wy + 0" - &
is the desired regression plane to the labelled data Y.

Example 2.2. Suppose you conduct a study, measuring the heights and weights of 30
individuals, and gather the data pictured below.

200

Weight (in pounds)
I = - =
I~ 5 & @
S S S S
® oo
» 1]
L]
we

=
S
S

60 62 64 66 68 70 72 74
Height (in inches)

FIGURE 2. The height and weight of 30 individuals.

You want to use this data to predict a person’s weight based on their height, and seeing
that the data follows a roughly linear pattern, you decide to use linear regression.

SUPERVISED LEARNING 9

Since the data has n = 1 features, the regression line f has the form
f(x) = wo +wz

for some wy, w; € R. For 1 < i < 30, let 29 and y denote the weight and height of the
ith individual respectively. Then, the cost function for the regression line is
30

(5) J(wo, wy) = % Z ((wo + wlx(i)) - y(i))Q)

=1

By taking partial derivatives, we find that J is minimized when w, ~ —273.47 and
wy ~ 6.28, thus
f(x) = —273.47 4 6.28,

pictured below.

200

180

160

Weight (in pounds)

120

100

60 62 64 66 68 70 72 74
Height (in inches)

FIGURE 3. The height and weight of 30 individuals, with the regression line.

Note that f can be used to predict the weight of an individual, given their height. For
example, according to the regression line, somebody who is five-foot nine, or 69 inches
tall, should weigh

£(69) = —273.47 + 6.28(69) = 159.85 pounds,

which is a reasonable estimate.

But how can we actually minimize a given cost function? In the next section, we will re-
view gradient descent, a numerical method for finding the minima of smooth multivariable
functions. Afterwards, we will revisit the above example in greater detail.

10 RITIK JAIN

3. GRADIENT DESCENT

Imagine waking up one cold, foggy night on the hill pictured below.

FIGURE 4. 13th-century terraces in Shexian, China.

You see some flickering lights resembling a fire at the bottom of the hill, but can’t see
clearly further than a few steps ahead of yourself! How can you effectively descend the
hill and reach the fire?

To start, you could feel if there’s a slant from where you're standing, and take a step in
the steepest direction downwards. Knowing that you're on a terrace, this step should be
relatively small to avoid falling over! Then, you can repeat this procedure step-by-step
until you eventually don’t feel any slant underneath your feet. At this point, you'll be
safely on the ground, and hopefully near the fire.

Gradient descent is essentially a mathematical version of this method, being used to
numerically approximate the minima of convex differentiable functions R” — R. We will
sketch how it works below.

Recall the following definition from multivariable calculus:

Definition 3.1. Let f : R® — R be a function in n variables z1,--- , z,, such that for all
1 < ¢ < n, the partial derivative % exists. The gradient of f is defined as the function
Vf:R*"—R",
0 0
I LAY

8$1 ’ ’ 6xn

The gradient is a key part the algorithm because, for any point p € R", —V f(p) is the
”direction of fastest decrease” of f at p.* By starting at some initial point and moving
step-by-step down the direction of —V f(p), we can obtain a good approximation of the
minimum of f after sufficiently many iterations.

4This fact is proved in Appendix B.

SUPERVISED LEARNING 11

The iterative equation for gradient descent is as follows. Let f : R — R be a convex,
differentiable function, and let xo € R™ be an arbitrary point. For all ¢ € Z,, the (i 4 1)th
step of the gradient descent is defined as

Xit1 = Xj — onf(xZ-),

where a € (0,00) is a fixed step size, or learning rate. Going back to the analogy at
the start of the section, this process can be thought of as travelling down a hill f from a
starting position x¢ by taking a-sized steps down the steepest direction —V f.

Provided that V f has continuous partial derivatives’, with an appropriate choice of a,

the sequence
X1, X0, X

is guaranteed to converge to the global minimum of f. If the learning rate « is larger,
the algorithm will move more aggressively down the graph of f. On the one hand, this
may result in a quicker convergence, but on the other, it can cause us to overshoot the
minimum, and end up oscillating around it. If a is smaller, the algorithm will be more
cautious, yielding a slower but more guaranteed convergence. In order to balance speed
and precision, we often start with a larger learning rate o, run the gradient descent, and
reduce o until convergence occurs.

We can apply gradient descent to numerically minimize the cost function of a given
regression plane to a set of datapoints. Let’s take a closer look at Example 2.2. Our cost
tunction, given in (5), was of the form

1 & 2
J(wo, wy) = 60 ; ((wo + wlx(z)) — y(’)) .
Taking partial derivatives, we have
30

oJ 1 . .
97 - gz ®) —)
oy = 30 2 (022 =40
0J 1 . o
9) _ 2 @) @) 20
81{]1 30 — ((IUQ w1x) Yy).T

therefore
1 X . . 1 X . o
VJ(wo, w1) = <% ;1 ((wo + UJL’L’(Z)) - y(’)) ' 30 ;1 ((wo + wlx(z)) - y(’)) x(l)> .

Note that J is convex and VJ has continuous partial derivatives, thus gradient descent
is applicable. Starting at a fixed x, € R?, the (i 4+ 1)th step is given by

Xit1 = X; — C(VJ(XZ)

"More generally, V f must be Lipschitz continuous.

12 RITIK JAIN

To demonstrate how the algorithm might be carried out in practice, let’s implement
gradient descent in pseudocode.

def J(w_0, w_1): # This is our cost function
Compute and sum the squared errors at each datapoint.
J(w_0, w_1) = sum i between 1 and 30:
((w_0 + w_1 * heights[i]) - weights[i])"2 / 2n
return J(w_0, w_1) # Return the cost function.

def d_dwO(w_O,w_1): # This is the partial derivative of J with respect to w_O0.
Compute the partial derivative.
d_dwO = sum i between 1 and 30:
((w_0 + w_1 * heights[i]) - weights[i]) / n
return d_dwO

def d_dwl(w_O,w_1): # This is the partial derivative of J with respect to w_1.
Compute the partial derivative.
d_dwl = sum i between 1 and 30:
((w_0 + w_1 * heights[i]) - weights[i]) * heights[i] / n
return d_dwl

Above, we computed the cost function J(wy, w) with its partial derivatives with re-
spect to wy and w;. Using these functions, we will run the gradient descent.

def grad_descent(d_dwO, d_dwl, learning rate, num_iterations, w_0, w_1):

for i between 1 and num_iterations: # This loop will run the gradient descent.
Update w_0, w_1 simultaneously.
temp_w_0 = w_0 - learning_rate * d_dw0(w0,wl)
temp_w_1 = w_1 - learning rate * d_dwl(wO,wl)
w_0 = temp_w_0
w_1 = temp_w_1

return w_0, w_1 # Return the final values of w_0O, w_1.

The process of gradient descent on (5) with 100, 000 iterations, a learning rate of a =
0.0003, from the initial point x, = (0,0), is visualized below. Every dot represents the
values for (wy, wy) after each thousandth iteration.

SUPERVISED LEARNING 13

-100

-150

-200

=250

[1 2 3 4 5 6

FIGURE 5. Convergence of the gradient descent algorithm.

As pictured in Figure 5, with each iteration, (wy, wy) approaches (6.28, —273.47), and the
changes become increasingly small. This is a good sign that the algorithm is converging
to the true minimum of the cost function .J as desired.

Remark 3.2. The above algorithm is actually a specific type of gradient descent called
batch gradient descent. The name is justified since it considers the error at each point in
the entire “batch” of training examples. There are two other important variations called
minibatch gradient descent and stochastic gradient descent.

The first algorithm, minibatch gradient descent, only considers the error with respect to
a "minibatch” of k£ randomly chosen training examples at each step. Stochastic gradient
descent is precisely minibatch gradient descent with £ = 1. Batch gradient descent is slow
but accurate, stochastic gradient descent is fast but sometimes inaccurate, and minibatch
gradient descent is a compromise between the two.

14 RITIK JAIN

4. LEAST-SQUARES REGRESSION

Acc.V' Spot Magﬁ Det WD Exp
30.0 kv 3.0 6836x SE 84 3

FIGURE 6. E. coli cluster, magnified 6836x. To
be discussed in Example 4.1.

While linear regression is a powerful and widely applicable model for many regression
problems, it is not an accurate fit for data which exhibit “non-linear” relationships. In
order to model such data, we consider a generalization of linear regression called least-
squares regression.

Recall the basic setup for linear regression. We are given a dataset X C R", with a
subset of m labelled datapoints Y = {(z1),yM), ... (2™ y(™)} < R"*!, and want to
find the “ideal” weights wy, W = (wy, - - - ,w,) such that the regression plane

f:R" =R, J(@) =wo+w-&
is a good fit to labelled data Y. We did this by minimizing the cost function (4)
1 & ; A 2
J RS R, J(w, @) = — @) — y@
) (w()?w) 2m;(f(x) Y))

by using gradient descent. Using the framework of the cost function, however it is possi-
ble to fit all sorts of curves and surfaces to our data, regardless of whether or not they are
linear. For example, suppose our dataset X has n = 1 features. If we were using linear
regression, the regression line would be taken to be f(z) = wy + w2z, where (wg, w;) is the
minimum of the cost function

m

1 ‘ ‘
J(w07 wl) = % Z ((wo + wlx(z)) _ y(z))2

i=1
But what if the labelled data Y C R? looked more like a parabola than a straight line?
In this case, we could take our model to be of the form f(z) = wy + wiz + wez?, where

https://phil.cdc.gov/details.aspx?pid=10068

SUPERVISED LEARNING 15

(wp, w1, we) minimizes the cost function

1 — . . N2
J('UJO,U)l,'U}z) = %Z ((wo + wlx(l) +’UJ2.%‘(Z)2> _ y(z)) '

1=

By the same reasoning as Section 2, the resulting model f(z) will be a good fit for the data.
In general, the process of minimizing the cost function of a regression model f is called
least-squares regression. In the special case that f is linear, it is called ordinary least-squares
regression. While least-squares regression is more computationally intensive when f is
nonlinear, it can provide a better model for our data.

Example 4.1. Suppose you want to model the average growth rate of 50 E. coli cells over
the course of one hour, grown in a lab. In order to gather some data, you set up a Petri
dish containing 50 E. coli cells, and record the number of cells every two minutes.

400 A

350 1 L]

300 1

Number of cells
= = N N
o w (=] w
o o o o
[]
[]
L
(]

v
=]
o
e
o

0 10 20 30 40 50 60
Time (in minutes)

FIGURE 7. Number of E. coli cells in the Petri dish over time.

The problem of modelling the growth rate can be formalized as a regression problem.
We can consider the closed interval [0, 60] to be our dataset, and the times for which we
know the number of E. coli cells as the labelled data. Since the average number of E. coli
cells in the dish is always a positive real number, we can take (0, c0) to be the label space.

As shown in Figure 7, the number of cells seems to be growing exponentially, and
doubling every twenty minutes. Will linear regression give a good model for this data?
Your intuition should be telling you “no”, since the data very much does not look like
a line. For the sake of curiosity, we can perform an ordinary least-squares regression
anyways, and obtain

(6) F(t) = 1.76 + 5.53t

as our regression line.

16 RITIK JAIN

400 A

350 1

300 1

N
%
i<}

N
=
1=}

Number of cells

0 10 20 30 40 50 60
Time (in minutes)

FIGURE 8. Number of E. coli cells, with the regression line.

As shown in Figure 8, the regression line underfits the data at several points. For exam-
ple, even though there are roughly 50 cells in the dish at the time ¢ = 0, our line predicts
that there are only f(0) = 1.76 cells!

Since our data is growing exponentially, a more appropriate model might be, you
guessed it, an exponential function! In particular, we can take f(z) = Ae® as our re-
gression model. Since f(0) = A = 50, we can simply take

f(t) = 50e”

to be our regression model, where b is an unknown parameter. Now, there m = 30 labelled
datapoints, so our cost function J : R — R will be of the form
30 30

7b) = % > (fa) - y)* = % > (5061“(") _ y(z‘))Q‘

i=1 i=1
The graph of our cost function on the interval b € [0, 0.05] is shown below.

le7

2.04

0.5

0.0 4

0.00 0.01 0.02 0.03 0.04 0.05
b

FIGURE 9. Graph of the cost function.

SUPERVISED LEARNING 17

Since J(b) is convex for the same reasons discussed in Section 2, it is strictly decreasing
before attaining its minimum, and strictly increasing afterwards. From Figure 9, the point
b =~ 0.035 is therefore the global minimum of the cost function J, hence our regression

model is given by
F(t) = 5060035t

To see if f(t) is a good fit, let’s plot it with our data.

400 A

350 4

300 -

250

Number of cells
N
o
o

150 A

100 -

50

Time (in minutes)

FIGURE 10. Number of E. coli cells, with f(t).

It appears that the model f(t) is indeed a good match for our data.

Remark 4.2. In some cases, it is not possible to visualize or predict what the regression
model should look like. In such cases, we can take it to be some combination of polyno-
mials and exponential functions. For example, consider a dataset X with a single feature
and some labelled data Y C X x [0, 1]. We could take the regression model to be

fz) = wo + w1z 4 wye".
Suppose that, after performing least-squares regression, we have
f(z) =10 + 0.005x + 30>

Since the weight w; for the linear term is very small relative to the coefficients w,, ws for
the exponential term, we can take the model to simply be f(z) = 10 + 30e°*. While being
a bit slower, this method of starting with a regression model containing many terms,
then removing terms with small coefficients after performing least-squares regression,
can often be useful. For example, if our data has three features, the labelled data will
appear in four-dimensional space, making it a bit hard to eyeball!

In the next section, we will take a look at another important supervised learning algo-
rithm, called k-nearest-neighbors. As we will see, k-nearest-neighbors requires far fewer
assumptions than either linear or least-squares regression, and can be used to solve both
regression and classification problems.

18 RITIK JAIN

5. K-NEAREST-NEIGHBORS

The k-nearest-neighbors (KNN) algorithm is one of the most powerful tools in super-
vised learning for its elegance and wide applicability. In contrast to least-squares regres-
sion, KNN does not require that the labelled data follows any particular pattern to work,
and can be easily adjusted to avoid overfitting and underfitting. We will demonstrate
how it works for classification problems through an example.

Example 5.1. Suppose we are given a dataset of ninety Delta customers, together with
their age, number of miles with Delta, and whether they generally fly in economy, business-
class, or first-class. Given the age and number of miles of a set of new customers, how
can we best predict which type of ticket they will purchase? First, let’s visualize our given
data, normalized such that the age and Delta miles of each customer is a real number be-
tween zero and one. We additionally represent each customer’s preference of flight class
by a color: bronze for economy, silver for business, and gold for first-class.

104 e Economy
Business
First Class

0.8

0.6

0.4

Delta miles (in hundreds of thousands)

e o °
o, ®
.
0.2 ol o _
] ° °
e ° °
e® o .
L] °
g ° e

0.0 1

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Age (in hundreds of years)

FIGURE 11. Dataset of Delta customers.

Note that there are a finite number of labels; economy, business, and first-class, so this
is a classification problem. The k-nearest-neighbors algorithm is one way of solving this,
and relies on the following simple idea. For every new customer ¢, we can look at the
k customers which are most similar in age and Delta miles to ¢, whose travelling prefer-
ences are known to us. These are the customer’s k-nearest-neighbors. Then, we can de-
cide where to sort ¢ by majority voting—if more than one-third of ¢’s k-nearest-neighbors

SUPERVISED LEARNING 19

generally travel in a particular class, we sort c into that class as well. In the rare case that
there is a tie between two or more classes, we can just sort ¢ randomly into one of them.

The algorithm can be implemented in general as follows. Take a dataset X C R" with
a subset Y of labelled datapoints, with label space {0, 1,--- , ¢} for some positive integer
¢. For each x € X, calculate the Euclidean distance® from x to each y € Y, and choose
k-nearest-neighbors y,--- ,yx € Y with the smallest distance to x. Then, denoting the
labels of the yy, - ,yx by l1,-- - ,l;, we predict the label of x to be the mode of [y, -- , [,
that is, the most frequently occurring label.

From the KNN algorithm with k = 4, for instance, a fifty-year-old customer with 10,000
Delta miles (represented by the point (0.5,0, 1)) is predicted to travel in economy, and a
thirty-year-old with 90,000 Delta miles is predicted to travel in first-class.

Now, let’s use KNN with £ = 4 in this example to sort a new batch of 500 customers,
which are represented as black points on the graph before they are sorted.

101 e o® o) o 1.0 o 09 o oo ° c()) Od)oo o
. °
. '..0'0 ".’ e ° % o0 o, ° 0?3000 800 0% % g0° o,
o e o ° ®op o0 0 00e",° o oo o © ®ag 00 0 00c 7,°
F 4 d . e®® @ o o L . . & o) c% @ o o 5] o o
. o ® . ° o 0O ° o
. e o L) oo ° 0% o D oo
0.8 o el o o e © 0.8 o %05 o5 o ° % 9
J P R e o, L0 e ° o P o 6o O, 5 0O o ©
_ e L, d ...m _ o0 4,0 o °°60
2 . S % °) °® 00®°’s o 8 o g (&% ©) 0® 00°°8 o
H » . % % o ® e] & 9,% % o o hy
§ .' o .. [Y . § o 00 P o, ® o °
506 o oF e ‘. o o %0 7% go, e s 5 061 o off © 80 °., 8 %0 " Gog 0 c
‘s [[5 o, o
E ".. .‘-.'o . o:. F : ... (] z oo%o °°o-°§o) %oo & g °oo o
o °) e o ° |3 o R © o
2 ' Ard * %y %o °C e, 3 2 0° &0 RBPS %y ®o 0 ©0%c.0 @
S LI ° o o e] ° o oc o Lo
2 e oo oo ° ° 2 ® o eooO o PO Q 4
£ 04 e o 0 o @ ° P ‘- §04 e © ©® O & ° ® 5 o o %n
w 04799 L ® e s S e = e v < N » 0417 ® e e o S ‘o “ o & % -
8 s ® N 2 o.;....lg'. 8 > o N 2 @ogooocg"’c
£ g oe® 0 ° ° ‘.. Pl o« 8 :‘. £ g o0 o ° ° 09)08 59 ©° o © gg:
T S0 ° ® 0p % e N5, 3 %0 ° ® % % o 5®¢ o0
8 ® AR B B Y M e %e o 8 ® 8, &% % d o %0 o
(S . H o 6% o 4
02 ° '30 oY% e o [} ° e %o ° 02l @ X o . [} o o ©o °
. . . o) . . o ® r 3 ° °
L] [] L []
A, 0 .. b JE R %+ oo 8o
° L] ° [® et PRL) ° ° © ok
%o ot .o °n . g %% %) o ° ®
0..°10 lbe o R L4 0o § O ‘o0 ©°0° o @ o, 8
° o oo . N ¢ o ° LIS ° % oo ° ® 6 o © ° o
028" o o °, o o . . 02" 7y o ° o o © ° o
0.04 . e® O ece o e 0.0 ° e L™ ese ¢ e
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
Age (in hundreds of years) Age (in hundreds of years)

FIGURE 12. Dataset of new customers before and after KNN.

As shown in the above figure, KNN seems to do a good job at classifying new cus-
tomers, and we can test it rigorously using five-fold cross-validation.

While KNN is most often used for classification problems, the framework can easily
be extended to regression problems as follows. Take a dataset X C R™ with a subset
Y of labelled datapoints, and let the label space be an interval L C R. For each x € X,

®There are also other forms of “distance” which are used for KNN, depending on how the datapoints are
distributed in R™ For example, people sometimes calculate nearest-neighbors using the Manhattan metric
or the more general Minowski metric.

20 RITIK JAIN

calculate the k-nearest-neighbors y, - - -,y € Y to x, which have respectively have labels
li,---,ly € L. Rather than do a “majority vote”, this time, we take the predicted label of
x to be the average

|

k
1
2l
i=1
of the labels of the k-nearest-neighbors.

Remark 5.2. The number of nearest-neighbors k can be any positive integer: in general,
if k£ is small, there is a higher risk of overfitting, and if % is large, there is a higher risk of
underfitting. In practice, the “right” value of k£ is usually chosen by trial-and-error.

Remark 5.3. Unlike least-squares regression, note that KNN does not need to be "trained”
on the labelled data; for example, no cost functions are being minimized. Instead, KNN
computes the predicted labels for each datapoint one-by-one. Therefore, KNN is part of
a class of models called lazy learning models. Since the entire dataset needs to be stored,
or “memorized”, lazy learning models are also called memory-based models.

In the next section, we will look logistic regression, an algorithm is designed especially
for solving classification problems with two classes. Such problems are ubiquitous in
applications, making logistic regression an essential part of any machine learning practi-
tioner’s toolbox.

SUPERVISED LEARNING 21

6. LOGISTIC REGRESSION

Arguably the most important problem in machine learning is that of binary classifica-
tion, the problem of sorting a dataset into two classes. For example, we might want to
classify patients as sick or healthy, emails as “spam” or “not spam”, or $100 bills as real
or counterfeit as in Question 1.1. In general, one class asserts that the data has a certain
property, and the other class asserts that it does not. The label space representing the two
classes is usually taken to be {0, 1}.

One nice quirk of binary classification problems is they can be reinterpreted as regres-
sion problems with the label space [0, 1]. Instead of assigning an unlabelled datapoint x to
a class in {0, 1}, we instead assign it a probability, representing chance of = being in class
1, or conversely, one minus the chance of it being in class 0. For example, if x is given the
label 0.62 € [0, 1], then « has a 62% chance of being in class 1, and a 100 — 62 = 38% chance
of being in class 0. Since this interpretation of binary classification problems allows for a
more precise characterization of the data, it often avoids underfitting.

Since understanding logistic regression and its underpinnings is important for a deeper
grasp of machine learning, we will derive it mathematically rather than skip straight to
an example, despite it requiring some knowledge of probability and statistics. However,
skimming the details when necessary is fine, since logistic regression can usually be im-
plemented in code by using a preexisting library.

That being said, let’s begin the derivation! For a dataset X C R", suppose we have a
binary-labelled subset

Y = {(x(l)ay(l))7 e (x(m)’y(m))} C X X {07 1}

Instead of finding a model which assigns a deterministic label y(Z) € {0, 1} to each data-
point ¥ € X, we associate a Bernoulli trial” B(Z) to each Z, where

L)0, y(@) =0
B() = {1, y(%) = 1.

The probability B(Z) = 1 is precisely the probability of ¥ being assigned a label of 1. We
want to model the function

p:X =001 p@ =P(BE)=1).

which assigns each 7 to the probability that it is labelled with 1. Due to its simplicity,
linear regression is often the first line of attack. In particular, we could model p(Z) by the
regression plane

7 A Bernoulli trial is a random variable with precisely two outcomes. Think coin flips or passing/failing
an exam.

22 RITIK JAIN

where @ = (wq, - - -, w,) is the vector of weights corresponding to the features 7 = (x4, - - - ,).
While this model is simple, it is problematic because w, + @ - Z is unbounded, but on the
other hand, p(7) is a probability, so it lies strictly on the interval [0, 1]. In order to fix this,

we apply the so-called logistic transformation® and obtain the model

The right-hand side of (7) is called the log-odds function. Note that as p(Z) tends to zero,
the log-odds function tends to —oo, as p(%) tends to one, the log-odds function tends to
oo, and the log-odds function is zero when p(Z) = 0.5. Solving (7) for p(Z), we have

®) p(%) = o(wy + @ - 7),
where () is the sigmoid function

1
©) o) =

0.8

0.6

o(z)

0.4

0.2

0.0

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

FIGURE 13. Graph of the sigmoid function.

Note that the S-shaped sigmoid function is a viable option for p(Z) since it is bounded
on the interval [0, 1], meaning that we can interpret its outputs as probabilities, and we
can fit the the graph of the sigmoid function o(w, + @ - #) to our data by adjusting the
parameters wy, w. In particular, in the n = 1 case, we can use wy to shift the graph left-
and-right, and adjust w; € (0,00) to change the steepness of the curve. You can play
around with the parameters for yourself here.

In order to find the optimal parameters wy, w, we will use a statistical method called
maximum likelihood estimation. Rather than choosing the parameters wy, 1w which mini-
mize a cost function as in Section 4, we choose parameters for which p(Z) = p(Z; wy, W)

8Here, log denotes the base-¢ natural logarithm.

https://www.desmos.com/calculator/azxtmkexq8

SUPERVISED LEARNING 23

”agrees” with the labelled data Y. For each labelled datapoint z(*), set

. | (i) 0 _ 1
1 —p(z®), 4@ =0.

Written differently, set

(1D P (B(z") = y?) = p(a®)"” (1 = p(a?)' "

It is a good exercise to prove that for yourself (10) and (11) are equivalent. In order to find
the optimal parameters for p(Z) = o(wy + @ - ¥), we can maximize the likelihood function

L(wo, ©) = [[P (B =4) Hp nY

k3

1 —p (x(z‘)))lfy“> 7

In order to transform the product to a sum to make things easier when differentiating, we
can equivalently minimize the negative log-likelihood function, given by

(12) f,(wo, w) = — Zy(i) log (p (x(i))) +(1— y(i)) log (1 —p (x(i))) _

Simplifying (12) and plugging in p(Z) = o(w + @ - 7), we have

s mo z(® s :
Flun,) =~ 3740l (% -3 ok (1 -5 (5))

i=1 i=1
— Zlog (1 " ewo-l—vj)'.x(i)) _ Zy(z') (wo + @ - 27
=1 i=1
Taking partial derivatives, for all 1 < j <n, we have
OL & . 4 o, & , o
13 —— = @) — @ gy @) — @) £@
(13) S ;(m =) G ;(p<x) — @) a

Note that VL has continuous partial derivatives, so we can use gradient descent to
minimize L.” After obtaining the approximated minimum wyp, @, the logistic regression
function is given by

7)) =

gy

p(Z) = o(wo + @

Let’s see logistic regression in practice with an example.

9Gradient descent is particularly useful here, since it is impossible to find minimum of algebraically.
so we can’t set them equal to zero and solve exactly!

This is because th 59 L

https://en.wikipedia.org/wiki/Transcendental_function

24 RITIK JAIN

Example 6.1. Suppose we want to classify whether or not a person is at risk for skin
cancer, based on the diameter or a melenoma lesion on their arm. We are given a dataset
of twenty individuals who were previously screened for skin cancer with the size of their
lesion, and whether or not they had skin cancer (represented by 0 and 1 respectively). The
data is visualized below.

109 x Healthy oo o oo (1]

® Sick

0.8 1

0.6

0.4

0.2

0014 X VX X XXX X

0 2 4 6 8
Lesion size (in mm)

FIGURE 14. Plot of twenty individuals.

We want to estimate the parameters of the function
p(x) = o(wy + wiz) = P(A patient with an mm lesion has skin cancer).

Note that logistic regression will provide a good fit for the data, since the probability of
an individual being sick is quite low if their lesion size is below a threshold of ~ 5 mm,
and increases rapidly if the lesion size is larger before levelling off. That is, the probability
of an individual being sick as a function of their lesion size should follow an S-shaped
sigmoid curve. Rather than go over the mathematical details again, let’s see how logistic
regression is implemented in Python.

import numpy as np
from sklearn.linear_model import LogisticRegression

Y = [(1.23, 0), (2.22, 0), (6.27, 1) ...] # List of labelled data.
X = np.array([x[0] for x in Y]).reshape(-1, 1)
y = np.array([x[1] for x in Y])

model = LogisticRegression() # Train the logistic regression model.

model.fit (X, y)

w_0 = model.intercept_[0] # Extract the parameters.

w_1 = model.coef_[0] [0]

Print the logistic regression function.

print (f’The logistic regression line is given by sigma({w_0:.2f} + {w_1:.2f}x)’)

SUPERVISED LEARNING 25

After running this code, we have wy ~ —6.90, w; ~ 1.40, hence

1
1 + e(6.90—1.40z) °

p(z) = 0(—6.90 4+ 1.40z) =

We can plot p(z) with the data using the following code:

import matplotlib.pyplot as plt

plt.scatter(X, y, color=’blue’, label=’Data points’)

x_values = np.linspace(min(X), max(X), 100)

y_values = 1 / (1 + np.exp(-(w_0 + w_1 * x_values)))

plt.plot(x_values, y_values, color=’red’, label=’Logistic regression line’)
plt.xlabel(’Lesion size (in mm)’)

plt.ylabel (’Probability’)

plt.legend()

plt.show()

— Logistic Regression Line
X Healthy
® Sick

1.0 4

0.8

Probability
o
o

o
'S
L

0.21

0.0 1

Lesion size (in mm)

FIGURE 15. Plot of the data, with the logistic regression function p(z).

It appears that the logistic regression line is a good fit for the data. If we wish to be
more precise, we can test the fit precisely using five-fold cross-validation.

Let’s use the model determine if a lesion size is indicative of skin cancer. First, since
p(3) =~ 0.063, someone with a 3mm lesion has only an estimated 6.3% chance of having
skin cancer. On the other hand, p(9) = 0.99, so someone with a 9mm lesion is almost
certainly sick. Finally, the threshold lesion size k& at which someone has a 50/50 shot of
being sick is where p(k) = 0.5, or where 6.90 — 1.40k = 0. Solving, we have k ~ 4.93mm,
so those with a lesion size of 5mm or above have some serious cause for concern.

In the next section, we will discuss a set of algorithms called support vector machines,
which, aside from logistic regression, represent the most popular approach to binary clas-
sification problems.

26

0.8

0.6

0.4 1

0.2

0.0

RITIK JAIN

7. SUPPORT VECTOR MACHINES

° ° * e 1 o g%
° r 0 0,9 ° ‘o.o: oof..'.
.}o 20 oo *
° ... ° . V. < % ‘
3 : o o0 °
. .. L .n d (L) ©
" ° o ‘e . ®e .: °
n. PN LY oo ® : ; ° c:
.o ,'...0:0° :;
®e o8]
.0 (®le® b - hd ° se

-0.25

—-0.50

-0.75

-1.00

(a) Linearly separable data.

FIGURE 16. Highway separating palm tree species. Source: Pikwizard.

Support Vector Machines (SVMs) are arguably the most effective set of algorithms for
solving binary classification problems. Unlike logistic regression, an SVM does not assign
datapoints x € R" to a probability of being in class 0 or class 1; instead, it attempt to find a
decision boundary, that is, a hyperplane H C R" which separates the labelled points either
class. Based on which side of H that an unlabelled datapoint x € R" lies on, we assign
it to class 0 or class 1. Such algorithms are called linear classification algorithms. In this
section, we will go over one of the more common SVM algorithms, called hard-margin
SVM.

The key assumption for the use of SVM is that our two classes of data are linearly seper-
able, meaning that the labelled datapoints in either class should be separable by a line or
hyperplane.

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

(b) Not linearly separable data.

https://pikwizard.com/photo/aerial-view-of-straight-highway-through-dense-palm-tree-plantation/f3bfa0834a04776f6543be820d9c6736/

SUPERVISED LEARNING 27

There are two common approaches for determining whether two classes of labelled
data are linearly separable. The first approach is checking if the convex hulls' about either
sets of points are disjoint. If so, the data is linearly separable. The second approach is
checking if the perceptron algorithm converges — if so, the data is linearly separable.

Let’s sketch the derivation of hard-margin SVM. To start, suppose we have a dataset
X C R" with a subset

of binary-labelled data. In order to simplify things later on, here we take the label space
to be {—1, 1} rather than {0, 1}. We want to find an optimal decision boundary

hiR' SR, h(@) =wy+@-F=0

which separates the two classes of data, also called a linear classifier. As usual, W =

(wy,- -+ ,wy) is the vector of weights corresponding to the features ¥ = (zy,--- ,x,). In
order to ensure that the points 2() with the label y® = —1 lie “below” the graph of h, we
need to impose the condition

(14) wy + @ - 2@ < —1,

and conversely, for the points z(?) with the label y) = 1 to lie “above” the graph of h,
we must have

(15) wo + @ - 2@ > 1,

Combining these two conditions, for all 1 < i < m, wy + @ - ¥ must satisfy
(16) y® (wo + W - x(i)) > 1.

Take a moment to convince yourself that (14) and (15) are necessary constraints on the
hyperplane, and together, they are equivalent to (16).

—

The condition (16) alone is enough to guarantee that the hyperplane i((z) = 0 linearly
classifies the points. In order to make sure that / is the optimal classifier, we can maximize
the distance from the hyperplane to the points on either size. In order to do this, we
can simply consider the datapoints which are “closest” to the hyperplane, called support
vectors. In particular, support vectors are defined as labelled datapoints =) for which (16)
becomes an equality

y (wo + 0 - m(i)) =1.

Letting v, ... v € X denote the set of support vectors, note that the distance from
each v to h(7) = 0 is given by
(17) oo+ -0 1

[[

19The convex hull about a set of points is the “smallest polytope” containing them.

https://course.ccs.neu.edu/cs6140sp15/2_GD_REG_pton_NN/lecture_notes/lectureNotes_Perceptron.pdf

28 RITIK JAIN

Therefore, in order to maximize the distance of h(#) = 0 from the support vectors v?,
we need to maximize ||@||. Combining (16) and (17), we need to find the parameters wy, W
which solve the following optimization problem:

(18) minimize ||@|| subjectto y@ (wo+@-2P) >1, 1<i<m.

Using the method of Lagrange multipliers, (18) can transformed into a quadratic pro-
gramming problem, which can be solved in O(m?) time using the sequential minimal
optimization (SMO) algorithm. Denoting the solution of (18) by wy, w, the desired hyper-
plane is given by

h(z) =wy+w -7 =0.

In order to grasp the intuition behind many machine learning algorithms, it is often
beneficial to first understand how thet are implemented for data in R?. This is particularly
true for SVM, which, despite being one of the more mathematically complex algorithms in
supervised learning, has a simple intuitive idea behind it. First, think of binary-classified
data with two features as points in R?. The decision boundary obtained by SVM can be
understood as the straight road which runs between the two classes of points with the
widest sidewalk,around it. An example of this is pictured below.

+ L

I Support i /
vector _ -~

Support -

vector @ =

-

FIGURE 17. Visualization of SVM, courtesy
of MathWorks.

The most popular generalization of hard-margin SVM is soft-margin SVM, which al-
lows for a small amount of misclassified points, or “noise”. Moreover, SVM can even be
applied to binary-classified data with a totally nonlinear decision boundary, such as the
points inside and outside of the unit circle, using a slick technique called the kernel trick.
These two methods will be discussed further in the next section.

https://en.wikipedia.org/wiki/Quadratic_programming
https://en.wikipedia.org/wiki/Quadratic_programming
https://en.wikipedia.org/wiki/Sequential_minimal_optimization
https://en.wikipedia.org/wiki/Sequential_minimal_optimization
https://www.mathworks.com/discovery/support-vector-machine.html

SUPERVISED LEARNING 29

8. SOFT-MARGIN SVM AND THE KERNEL TRICK

In this section, we will discuss soft-margin SVM and the kernel trick, the two most
common adaptations of hard-margin SVM to data which is not linearly separable."’ In
real-life applications of SVM, both methods are often used in tandem.

8.1. Soft-margin SVM. As mentioned in Section 7, the soft-margin SVM algorithm gen-
eralizes hard-margin SVM by allowing for a few misclassified datapoints. Since most data
is not linearly separable, this algorithm is immensely useful in practice. In particular, it
is most helpful for data which is “almost” linearly separable, meaning that the data is
linearly separable apart from a few outliers, and for data which is linearly separable, but
still contains outliners. In the latter case, hard-margin SVM can be applied, but it often
causes overfitting, as shown in the below figure.

4
©
© ®
.0 ° o
o N4 O
S > SXe :
o b
o0 0
o ©

FIGURE 18. Linearly separable data with
two decision boundaries.

While the two classes of data (diamonds and circles) can technically be separated using
the red line, it is clear that the green line is a superior linear classifier, since it “ignores”
the singular diamond which is annoyingly close to the circles.

Recall that, for hard-margin SVM, the ideal linear classifier wy + @ - & = 0 is the solution
to the minimization problem

(19) minimize |[@|| subjectto y* (wo+@-2) >1, 1<i<m,

where Y = {(zM, yM) ... (0™ 4™} c R" is our set of labelled data. In order to
soften this conditon, we introduce a so-called slack variable ¢; for each datapoint @,
such that ¢ = 0 if ¥y is on the correct side of the linear classifier, and if not, &; is the

"Much of the contents of this section was inspired by this article by Rishabh Misra.

https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe

30 RITIK JAIN

distance from the hyperplane bounding the points in its class. To see what this means, look
carefully at the below visual.

A
\ o)
y, @ o)
o O © o
& N %O . O
\\ P O
© O % O
o o 0
o ©

FIGURE 19. Slack variables for two misclassified datapoints.

We can then modify the condition required for our linear classifier to be as follows. For
some C' € [0, 00), we choose the wy, @ which solve the optimization problem

(20) minimize |[[@||+C Y & subjectto y@ (wo+w-2W) >1-¢, 1<i<m.
i=1

Note that there are two modifications from the case of hard-margin SVM. Firstly, rather
than just minimizing ||@||, we want to minimize ||@|| + C > " &, where C'Y " & is the
weighted sum of the slack variables. The extra parameter C' can be adjusted depending
on how much we care about classifying points correctly, vs how much we care about
maximizing the margin about the linear classifier. If C' is large, more emphasis is placed
on accurate classification, whereas if C' is small, more emphasis is placed on maximizing
the margin.

Note that we also relax the lower bound on y® (wy + @ - 2®). If 2 is classified cor-
rectly, then the lower boundis 1 — & =1 -0 = 1, but if 2 is classified incorrectly, the
hyperplane is given a bit of extra wiggle room.

8.2. The kernel trick. In many cases, the two classes of labelled data Y C R™ cannot
be separated by a (n — 1)-dimensional hyperplane. For example, the points inside and
outside of the unit circle in R? cannot be separated by a straight line. In order to apply
SVM in such cases, we can apply a technique known as the kernel trick. By applying a
nonlinear transformation ¢ : R* — R™ for some m, we can linearly separate the labelled
points in (n + 1)-dimensional space by an n-dimensional hyperplane. For example, in
order to separate the points inside and outside the unit circle, we could define the map

¢:R* =R, @)= ||Z]l.

SUPERVISED LEARNING 31

If 7 lies inside the unit circle, we have ||Z]| < 1, and if not, ||Z]| > 1. After associating
each 7 € R? with the point (7, ¢(%)) € R?, we can separate the points inside and outside
of the unit circle with the plane z = 1 in R®.

2D ED)

FIGURE 20. The kernel trick in n = 2 dimensions. Courtesy of Suraj Yadav.

Note that using the transformation function ¢, we can define a new distance between
datapoints. Ordinarily, the linear distance between vectors x;,x, € R" can be measured
using the dot product x; - xo = ||x1]| ||x2|| cos(f), where 6 is the angle between the two
vectors. The dot product is a type of a kernel function called a linear kernel. More generally,
for some transformation function ¢ : R® — R™, a kernel function K : R" x R* — R is
defined as

K(x1,%x2) = ¢(x1) - ¢(xa2).

For an appropriate transformation ¢, K can gives us a linear measure of the distance
between datapoints which may have a nonlinear relationships. Thus, while the linear
separability requirement makes SVM impossible to apply in most cases, it can often be
overcome by using transforming the data appropriately.

One common nonlinear kernel function is the degree-d polynomial kernel K,, defined as'
K(x1,%5) = (x1 - %5 +).
While the kernel trick is an essential step in the data preparation process in many appli-

cations of SVMs, the mathematical and numerical methods required to find appropriate
kernel functions in higher dimensions lie outside the scope of this document.

2while K, isn’t explicitly written in the form Ky(x1,x2) = ¢(x1) - ¢(x2), Mercer’s theorem guarantees
that a map ¢ representing K exists.

https://medium.com/@Suraj_Yadav/what-is-kernel-trick-in-svm-interview-questions-related-to-kernel-trick-97674401c48d

32 RITIK JAIN

9. APPENDIX A: ASSUMPTIONS FOR LINEAR REGRESSION

In this section, we will go over the assumptions needed for the appropriate usage of
linear regression, as well as some practical methods of checking them.

Given a set Y = {(#1,yM)),... (F™ yM)} C R™! of m labelled datapoints, let
f(x1, -, 2n) = wo + w1 + - - - + wyx™ be the regression plane to the points in Y.

Definition 9.1. From a set of labelled data Y with size m, and for all 1 < i < m, the ith
residual is defined as

e = f(@M) -y,

In order for f to be a good model for the labelled data, the residuals must satisfy the
following four assumptions.

(1) Independence. None of the features x4, - - - , z,, should be highly correlated. This can
be tested statistically using the Durbin-Watson test. Given a list residuals of the residuals,
the Python code for the test is as follows.

from statsmodels.stats.stattools import durbin_watson
durbin_watson_stat = durbin_watson(residuals)
print (f ’Durbin-Watson statistic: {durbin_watson_statl}’)

The Durbin-Watson statistic is always a real number between zero and four. A statistic
closer to two suggests independence, whereas a statistic closer to zero or four suggests
correlation.

(2) Linearity. The datapoints 7V, ... #(™ should have an approximately linear rela-
tionship to the labels y™), - - - | y(™. This assumption is often checked visually.

(3) Normality of residuals. The residuals ey, - ,e,, should be normally distributed
with mean 0 and variance 1. The two most popular methods of checking for normality
are the Q-Q plot, and the Shapiro-Wilk Test. The Q-Q plot can be visualized in Python using
the following code.

import scipy.stats as stats

import matplotlib.pyplot as plt
stats.probplot(residuals, dist="norm", plot=plt)
plt.show()

If the points fall approximately on the line y = z, the residuals are normal. On the other
hand, the Shapiro-Wilk Test can be implemented in Python with the following code.

from scipy.stats import shapiro
shapiro_test = shapiro(residuals)
print (f’Shapiro-Wilk test p-value: {shapiro_test.pvaluel}’)

SUPERVISED LEARNING 33

If the outputted p-value exceeds the significance level of 0.05, we can assume the residuals
are normally distributed.

(4) Homoscedasticity (Same variance). The size of the errors e; should all be approx-
imately equal. One test for this assumption is the White Test, which is implemented in
Python below.

from statsmodels.stats.diagnostic import het_white
lm_stat, lm_p_value, f_stat, f_p_value = het_white(residuals, X)
print (f’White test p-value: {lm_p_valuel}’)

If the p-value exceeds 0.05, we can assume homoscedasticity, or a lack of heteroscedasticity.

We can also perform a quick check of all four assumptions by looking at the residual
plot, which consists of the points (1,e;),- - (m,e,,). If regression plane is a good fit, the
residual plot should look like a random cloud of points centered at z-axis. To get a clearer
sense of what that means, let’s take a look at the residual plots from the linear regressions
performed in Examples 2.2 and 4.1.

~100 -100
0 5 10 15 20 25 30 0 5 10 15 20 25 30

(a) Residual plot from Example 2.2. (b) Residual plot from Example 4.1.

We will first analyze the residual plot from Example 4.1. Heteroscedasticity is usually
detected through a lack of a “cone-like” pattern in the residual plot, where the residuals
do not get farther from or closer to the z-axis from left to right. Since this does not occur in
Example 4.1, the homoscedasticity assumption may be satisfied. However, the residuals
do follow an arc, so the data may be nonlinear and correlated. The residuals also attain
extreme values like 50, so we cannot assume the data is normally distributed with mean
0 and variance 1. Since three assumptions seem to be violated, there is sufficient evidence
to reject linear regression as a viable model for the data in Example 4.1.

On the other hand, in Example 2.2, the residuals do seem to be randomly distributed
about the z-axis with a relatively uniform and small variance. Therefore, we can conclude
from the residual plot that linear regression is a good model for our data.

34 RITIK JAIN

10. APPENDIX B: GRADIENT DESCENT

Here, we will show that, if f : R® — R is differentiable, then at any point p € R",
—V f(p) is the “direction of fastest decrease” at f(p). To start, let’s define what it means
for f to increase or decrease in a particular direction.

Definition 10.1. Let f : R” — R be differentiable, and let v € R" be a vector such that
||v|| = 1. The directional derivative of f at a point p € R™ is defined as

Dyf(p) = Vf(p)-v.

Intuitively, D, f(p) measures the rate of change of f at p in the direction of a given unit
vector v. If D, f(p) is positive, f is increasing at p in the direction of v. On the other
hand, if D, f(p) is negative, f is decreasing at p in the direction of v. Moreover, the larger
|Dy f(p)| is, the faster the rate of change of f is at p in the direction of v.

We will show that, for any point p € R", the directional derivative D, f(p) is minimized
when v = —V f(p). First, by the definition of the dot product, we have

(21) Dyf(p) =V f(p)-v=I[VI@I V] cos®),

where 6 € [0,27) denotes the angle between V f(p) and v. Since ||Vf(p)|| ||v]| =
||V f(p)|| is a positive scalar, D, f(p) is minimized when cos(#) is minimized. But
og[(nglw) cos(#) = cos(m) = —1,
implying that D, f(p) attains a minimum when the angle 6 between V f(p) and v is
m, or 180 degrees. Therefore, the directional derivative D, f(p) is minimized when v is
pointing opposite direction of V f(p), or when

v VIip)

IVl

Moreover,
Dyf(p) =—[IVf(P)l[<0

so f is decreasing at p in the direction of —V f(p) when V f(p) # 0. O

	1. Introduction
	2. Linear regression
	3. Gradient descent
	4. Least-squares regression
	5. k-nearest-neighbors
	6. Logistic Regression
	7. Support Vector Machines
	8. Soft-margin SVM and the kernel trick
	8.1. Soft-margin SVM
	8.2. The kernel trick

	9. Appendix A: Assumptions for linear regression
	10. Appendix B: Gradient descent

