

THE RING OF CYCLOTOMIC INTEGERS

RITIK JAIN

In this note, we use p -adic numbers to prove that $\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})} = \mathbb{Z}[\zeta_{p^r}]$ for a prime power p^r .¹ The proof proceeds in two steps: first, we reduce the problem to proving the statement over \mathbb{Q}_p , then establish the result locally. This approach is less computationally intensive than the standard proofs, and moreover provides a nice illustration of the technique of “passing to local fields”.

Lemma 1. Let $A \subseteq B$ be two finitely generated, torsion-free abelian groups of rank $n \in \mathbb{N}$. Then for each prime p ,

$$[B \otimes_{\mathbb{Z}} \mathbb{Z}_p : A \otimes_{\mathbb{Z}} \mathbb{Z}_p] = p^{v_p([B:A])},$$

where left-hand side is the cardinality of the \mathbb{Z}_p -module $(B \otimes_{\mathbb{Z}} \mathbb{Z}_p)/(A \otimes_{\mathbb{Z}} \mathbb{Z}_p)$, and v_p denotes the p -adic valuation.

Proof. Choose \mathbb{Z} -bases so that the inclusion $A \hookrightarrow B$ is represented by a matrix $T \in M_n(\mathbb{Z})$ with determinant $d \neq 0$, so $[B : A] = |d|$. After tensoring by \mathbb{Z}_p , the inclusion $A \otimes_{\mathbb{Z}} \mathbb{Z}_p \hookrightarrow B \otimes_{\mathbb{Z}} \mathbb{Z}_p$ is still represented by T (now viewed as a matrix over \mathbb{Z}_p), thus over the PID \mathbb{Z}_p , we can put T into Smith normal form as follows:

$$U T V = \text{diag}(p^{a_1}, \dots, p^{a_n}), \quad U, V \in \text{GL}_n(\mathbb{Z}_p), \quad a_i \geq 0.$$

The cokernel of $T : A \otimes \mathbb{Z}_p \rightarrow B \otimes \mathbb{Z}_p$ is thus

$$(B \otimes \mathbb{Z}_p)/(A \otimes \mathbb{Z}_p) \cong \bigoplus_{i=1}^n \mathbb{Z}_p/(p^{a_i}) \cong \bigoplus_{i=1}^n \mathbb{Z}/p^{a_i}\mathbb{Z},$$

so

$$[B \otimes \mathbb{Z}_p : A \otimes \mathbb{Z}_p] = p^{a_1 + \dots + a_n} = p^{v_p(\det T)} = p^{v_p([B:A])}.$$

□

Lemma 2. For a prime power p^r , $\mathbb{Z}_p[\zeta_{p^r}]$ is a discrete valuation ring.

Proof. Using

$$\Phi_{p^r}(x) = \prod_{\substack{1 \leq a \leq p^r \\ (a, p^r) = 1}} (x - \zeta_{p^r}^a),$$

Date: November 2025.

¹The inspiration for this proof was a [comment](#) written by Keith Conrad on MathOverflow.

we obtain

$$\Phi_{p^r}(1) = p = \prod_{\substack{1 \leq a \leq p^r \\ (a, p^r) = 1}} (1 - \zeta_{p^r}^a).$$

The factors $(1 - \zeta_{p^r}^a)$ are Galois conjugates of $1 - \zeta_{p^r}$, so they all generate the same prime ideal $(1 - \zeta_{p^r})$ above p . That is, (p) is a power of $(1 - \zeta_{p^r})$. But every maximal ideal in $\mathbb{Z}_p[\zeta_{p^r}]$ contains (p) , hence $(1 - \zeta_{p^r})$ is the unique maximal ideal in $\mathbb{Z}_p[\zeta_{p^r}]$. In particular, $\mathbb{Z}_p[\zeta_{p^r}]$ is a local ring. But $\mathbb{Z}_p[\zeta_{p^r}]$ is also finite over the DVR \mathbb{Z}_p , so in particular $\mathbb{Z}_p[\zeta_{p^r}]$ is a local Dedekind domain. Since every local Dedekind domain is a DVR, we have the result. \square

Having established these two lemmas, the proof becomes relatively straightforward.

Theorem. Let $K := \mathbb{Q}(\zeta_{p^r})$ for a prime power p^r . Then $\mathcal{O}_K = \mathbb{Z}[\zeta_{p^r}]$.

Proof. Since the inclusion $\mathbb{Z}[\zeta_{p^r}] \subseteq \mathcal{O}_K$ is clear, it suffices to show that

$$[\mathcal{O}_K : \mathbb{Z}[\zeta_{p^r}]] = 1,$$

where \mathcal{O}_K and $\mathbb{Z}[\zeta_{p^r}]$ are viewed as free \mathbb{Z} -modules. By Marcus, Ch. 1, Exercise 27(c), we have

$$(1) \quad \text{disc}(\mathbb{Z}[\zeta_{p^r}]) = \text{disc}(\mathcal{O}_K) \cdot [\mathcal{O}_K : \mathbb{Z}[\zeta_{p^r}]]^2.$$

Since it is known that $\text{disc}(\mathbb{Z}[\zeta_{p^r}])$ is a signed power of p , (1) implies that $[\mathcal{O}_K : \mathbb{Z}[\zeta_{p^r}]]$ is a power of p . That is,

$$(2) \quad [\mathcal{O}_K : \mathbb{Z}[\zeta_{p^r}]] = p^{v_p([\mathcal{O}_K : \mathbb{Z}[\zeta_{p^r}]])},$$

Now, tensoring by \mathbb{Z}_p , we have

$$\mathbb{Z}[\zeta_{p^r}] \otimes_{\mathbb{Z}} \mathbb{Z}_p \cong \mathbb{Z}_p[\zeta_{p^r}], \quad \mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Z}_p \cong \mathcal{O}_{K_p},$$

where $K_p := \mathbb{Q}_p(\zeta_{p^r})$. By Lemma 1,

$$[\mathcal{O}_{K_p} : \mathbb{Z}_p[\zeta_{p^r}]] = p^{v_p([\mathcal{O}_K : \mathbb{Z}[\zeta_{p^r}]])},$$

thus by (2),

$$[\mathcal{O}_K : \mathbb{Z}[\zeta_{p^r}]] = [\mathcal{O}_{K_p} : \mathbb{Z}_p[\zeta_{p^r}]].$$

Therefore, it suffices to show that $\mathcal{O}_{K_p} = \mathbb{Z}_p[\zeta_{p^r}]$. By Lemma 2, $\mathbb{Z}_p[\zeta_{p^r}]$ is a discrete valuation ring in K_p , hence it is integrally closed in K_p . Since $\mathbb{Z}_p \subseteq \mathbb{Z}_p[\zeta_{p^r}]$, we have that $\mathbb{Z}_p[\zeta_{p^r}]$ must be the integral closure of \mathbb{Z}_p in K_p . But \mathcal{O}_{K_p} is the unique subring of K_p with this property, thus $\mathcal{O}_{K_p} = \mathbb{Z}_p[\zeta_{p^r}]$ as desired. \square